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What is the order of the nematic—smectic-A (INA) transition? The answer to this question has
flip-flopped over the years as ever more sophisticated theories and ever more careful experiments
have addressed the issue. The Landau theory predicts that the transition can be either first or
second order, depending on material parameters. de Gennes and McMillan [Solid State Commun.
10, 753 (1972); Phys. Rev. A 4, 1238 (1971)] showed that nematic fluctuations would drive the
transition to first order as the temperature of the N A transition approached that of the nematic-
isotropic transition. Halperin, Lubensky, and Ma [Phys. Rev. Lett. 32, 292 (1974)] (HLM) then
argued that the effect of nematic fluctuations is more subtle and concluded that the transition is
always at least weakly first order. Monte Carlo simulations indicate, however, that for a large
enough nematic range, the transition becomes second order. We investigate the order of the NA
transition experimentally by measuring the capillary length (ratio of the surface tension to the
latent heat) near an apparent tricritical point in a binary liquid-crystal mixture. Our measurements
confirm the existence of the extra free-energy term predicted by the HLM theory and yield, as
a by-product, surface-tension measurements of the N A interface. Although we cannot currently
detect the tricritical point suggested by numerical work, we have not approached any fundamental
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sensitivity limits either.

PACS number(s): 64.70.Md, 61.30.Cz

I. INTRODUCTION

In a nematic liquid crystal, molecules have orienta-
tional but not positional ordering. In a smectic-A liquid
crystal, molecules are layered, forming a one-dimensional
stack of two-dimensional fluids, with molecules normal to
the layers. The transition between the two phases [the
nematic-smectic-A (N A) transition] would thus seem to
be simple: an orientationally ordered phase becomes lay-
ered. In fact, the NV A transition has turned out to be one
of the most subtle phase transitions yet encountered and
despite nearly 25 years of intensive study, eludes com-
plete understanding. As a recent review by de Gennes
and Prost concludes, “It seems that we almost under-
stand, but not quite” [1]. (For other reviews of the NA
transition, see [2-4].)

One of the subtle points concerns the order of the phase
transition. At issue is whether the VA transition can be
second order and if so, what is the nature of the tricriti-
cal point dividing first- and second-order IV A transitions.
The simplest Landau theories of transitions to layered
states [5] suggested that the transition could be either
first or second order, depending on material parameters.
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Early theoretical discussions by de Gennes [6] and McMil-
lan [7] considered the increase of molecular alignment
that accompanies the transition and concluded that as
Tna — Tni, there would be a tricritical point, where
the transition would change from second order to first or-
der. (Here Ty 4 is the transition temperature between the
nematic and smectic-A phases, while T is the transi-
tion temperature between the nematic and isotropic-fluid
phases. We will be discussing materials with the phase
sequence A-N-I encountered on increasing the tempera-
ture.) A more elaborate calculation by Halperin, Luben-
sky, and Ma (HLM) concluded that nematic orientational
fluctuations implied that the transition would always be
first order, whatever the value of Twa/Tn1 [8]. Sev-
eral years later, however, Monte Carlo simulations by
Dasgupta and Halperin [9,10] and by Bartholomew [11]
suggested that for small enough Tna/TnNr1, the transi-
tion should in fact be second order. This conclusion is
consistent with analytical studies that show that as the
splay elasticity (K1) constant becomes infinite (a limit
that crudely corresponds to having an infinite nematic
range), the N A transition should be second order and in
the same universality class as the three-dimensional XY
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model [3].

As for experiments, there are many examples of NA
transitions that are clearly first order and many exam-
ples that are apparently second order, the problem of
course being that it is impossible, on account of exper-
imental noise and uncertainties, to rule out arbitrarily
weak discontinuities in-thermodynamic quantities. One
way to systematically investigate the theoretical models
mentioned above is to measure the N A latent heat as a
function of the ratio Twa/Tns. Such a study was un-
dertaken by Marynissen et al. for mixtures of the liquid
crystals 8CB and 10CB (nCB is n-alkyl-cyanobiphenyl),
where Tna/Tnr is a continuous function of the rela-
tive concentration of the two species [12]. (See Fig. 1
for a phase diagram of this mixture.) Marynissen et al.
found an apparent tricritical point at 0.31 mole fraction
of 10CB in 8CB. Near this point, the latent heat vanished
quadratically with the mole fraction of 10CB, although
de Gennes’s theory predicts a linear dependence. More
important, there is no theory that predicts a quadratic
dependence. As Anisimov and his collaborators realized
[13], a possible explanation is that the apparent quadratic
behavior is actually a signature that the free energy con-
tains an extra term that, while forbidden by the simplest
Landau theories, appears naturally in the more sophis-
ticated calculation by Halperin, Lubensky, and Ma. To
explore this possibility, Anisimov et al. [14] reanalyzed
the latent-heat data of Marynissen and others [12,15,16]
and showed that the data were consistent with theoreti-
cal predictions for the latent heat derived from the HLM
theory. More recently, Cladis et al. approached the same
question by measuring the kinetic coefficient of N A fronts
in the same liquid-crystal systems [17]. (The kinetic co-
efficient relates the speed of a moving interface to the
undercooling below Ty 4; it diverges as the transition be-
comes weakly first order.) They also found results con-
sistent with the HLM theory. The work of both groups
was summarized in a joint review paper [18], where they
concluded that there is reasonable evidence that fluctu-
ations do keep the transition first order. There was no
evidence for or against the tricritical point predicted by
Monte Carlo studies.
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FIG. 1. Phase diagram for a mixture of 8CB and 10CB
(after [12]). The transition is clearly first order to the right of
the marked point, where there is a solid line, and either second

order or very weakly first order to the left, where there is a
dashed line.
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Our purpose in this paper is to investigate the order of
the N A transition via a different thermodynamic quan-
tity, the capillary length do, which is the ratio of surface
tension v to the latent heat per unit volume L. The
method that we use for measuring dy, although familiar
in the metallurgical literature [19], has been only rarely
applied to liquid crystals [20]. Given a measurement of
do, we can extract vy either using experimental measure-
ments of L or by using theoretical expressions based on
the HLM theory. Thus a measurement of the capillary
length can be used to deduce the surface tension of the
interface. By measuring the behavior of dg as a function
of Tya/Tnr, we can gain additional evidence concern-
ing the order of the NA transition. The sensitivity of
our apparatus is currently equivalent to that of adiabatic
scanning calorimeters and we do not seem to be close to
any fundamental limitations of our method. Our mea-
surements, presented below, confirm those of Anisimov
and Cladis. At present, there is still no evidence for the
tricritical point suggested by numerical work. We were
further motivated in our study by the realization that,
as far as we can determine, no measurements of surface
tension have ever been reported for the N A interface.

The rest of the paper is organized as follows. In Sec.
II we review the relevant theoretical calculations. In Sec.
III we describe our technique for measuring the capillary
length and, using the HLM theory or using independent
experimental values of the latent heat, the surface ten-
sion. In Sec. IV we describe our experimental appa-
ratus. In Sec. V we present our measurements, while
Sec. VI gives a brief conclusion. Appendix A discusses
how a scratched glass substrate can produce the inter-
face distortion we use to measure the capillary length.
Appendix B discusses whether the finite thickness of the
sample influences our values of the capillary length. Ap-
pendix C discusses the possible effect of using a mixture
rather than a pure material for our work and of having
impurities in that mixture.

II. THEORETICAL CONSIDERATIONS

As mentioned in the Introduction, the N A transition
describes the spontaneous layering of molecules that were
already orientationally ordered. Let the smectic layers be
parallel to the z-y plane, with molecules directed along
the z axis. The molecular density along the z direction
is

p(z) = po [1+ Re (pe'%%)] . (1)

Here po is the average fluid density, ¢ is the smectic
wave number, and ¥ is a complex order parameter whose
magnitude indicates the strength of smectic ordering and
whose phase determines the position of the layers rela-
tive to an arbitrary point along the z axis. Because a
uniform translation of the smectic layers should not alter
the free energy, one expects that near the N A transition,
the free energy may be expanded in even powers of the
magnitude of . (The transformation ¢ — —1, for ex-
ample, corresponds to a uniform displacement of half a
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layer spacing.) For the free energy, we thus expect
1 ! 2 1 ! 4 1 6
Fa$) = AT + 1C 1+ Bl (2)

As usual, the coefficient A’ is taken to be a function of
temperature A’ = a(T —T}"), while the other coefficients
are taken to be independent of temperature (over the nar-
row range of temperatures of interest). If the coeflicient
C’ < 0, the transition is first order, while if C’ > 0, the
transition is second order. The case C’' = 0 is referred to
as a Landau tricritical point.

As McMillan found for a specific model [7] and as de
Gennes argued in general [21], the special properties of
the nematic phase make the situation more subtle. In the
nematic phase, orientational fluctuations are soft modes
that cost little energy. In the smectic-A phase, such fluc-
tuations change the layer spacing and are hard modes,
costing much more energy. Thus layering is necessarily
accompanied by a decrease in orientational fluctuations
or, equivalently, an increase in nematic order parameter.
This leads to additional terms in the free energy of the
form

Fi(8) = DU*(5S) + 3- (65", (3)

where Fiy(S) is the free energy of the base nematic state,
S is the nematic order parameter in the absence of smec-
tic layering, and 6.5 is the increase in nematic order pa-
rameter caused by the layering. The second term shows
that layering becomes easier as orientational fluctuations
are decreased. The third term represents the free-energy
cost of having a nematic order parameter (S+9S5) higher
than the equilibrium value in the absence of layering
(S). Minimizing the augmented free energy with re-
spect to 65, one finds that the free energy again has
the form shown in Eq. (2), with a shifted quartic coef-
ficient C = C' — 2D?%x. The “nematic susceptibility” x
measures the free-energy cost of increasing the order pa-
rameter. Since the nematic order parameter increases as
the temperature decreases below T, we expect x to be
large when Tx 4 S Tivr (since the nematic order param-
eter will be small before the layering, which will increase
its value to close to 1). Conversely, when Tx 4 < TN, X
will be small. Thus the smaller the existence range of the
nematic phase, the bigger the renormalization of the co-
efficient C’, implying that as Ty a4 — TN, the transition
will change from second to first order.

Halperin, Lubensky, and Ma showed that the transi-
tion from the normal to the superconducting state pre-
dicted by the BCS theory for type-I superconductors
must be weakly first order by considering the partial ex-
pulsion of “blackbody radiation” from the superconduct-
ing phase [8]. Because the VA transition is described by
a Hamiltonian that may be mapped onto a modified ver-
sion of the superconducting transition [22], it should also
be a first-order transition. By including the coupling be-
tween director fluctuations én(r) and the smectic order
parameter ¥ (r), they showed that a transition thought to
be second order below the Landau tricritical point would
in fact be weakly first order. With the extra coupling
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terms the free-energy density becomes

F(,n(x) = L A9l + (CloI* + GElwl
5088 [Vyu] + 5e€2 (Vo — igbm)y?
5K [(V-0n)? +(V x 6n)?]. (4)

The first three terms of Eq. (4) are the de Gennes—
McMillan free energy, with the coefficient C' renormal-
ized by the S coupling. The last two terms represent
the elastic restoring force due to a small orientational
fluctuation én. Here, for convenience of calculation, we
are assuming that the Frank elastic coefficients for splay,
twist, and bend are all equal to K. (This simplification
does not alter any of our conclusions.) The V|, term ac-
counts for changes in the layer spacing and the V| —igén
term accounts for rotations of the molecules with respect
to the layers, which may themselves be rotated with re-
spect to the x-y plane. The constants £ and £, are the
parallel and perpendicular correlation lengths and ¢ is a
phenomenological constant with units of energy per unit
volume. In Eq. (4), smectic-layer fluctuations 1) are cou-
pled to nematic fluctuations dn. The basic assumption of
HLM is that the smectic fluctuations are smaller than the
nematic ones. Physically, this makes sense near the Lan-
dau tricritical point. Since the nematic order parameter
S is small, there will be large fluctuations of én about
the z axis. Mathematically, the approximation consists
of letting 1) be constant (so that all Vi terms are zero)
and then integrating out the dn field in the free energy.
If ¢ is constant, the free-energy density is

F,dm) = SAP + ;O + cEIYI®
+ 5 e€Lg?(6n) 2
+%K [(V-6n)? + (V x én)?] . (5)

One can evaluate [dn(r)]? by Fourier transforming it
into k space, where [0n(r)]®> ~ [dk[én(k)]?>. The free-
energy terms involving [én(r)]? are then

Pl 50} ~ [ i[5 ol + 3102 fn(o)F

(6)

Using the equipartition theorem for each mode [dn(k)]?,
we have

kT
Kk? + c£2 g?|y)?”

[6n(k))* ~ (7)

This expression is then Fourier transformed back into real
space, giving
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. k2(ksT)
é 2 ~/ dk—
[ Tl(”')] o Kk2 + Céiqzw)Iz

k
maz kBT
= dk——
L%

T keTet Plyf?
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Here the divergent part of the Fourier-transform integral
has been cut off at k.., and the finite part has been
extended to k = oco. Substituting this expression for
[6n(r)]? back into the free energy [Eq. (5)], we find that
first term renormalizes the coefficient A’ and thus shifts
the transition temperature. The effect of the second term
is more dramatic, since the free energy now has a term
that is cubic in |4|. The effective free energy is

F) = LW + LB + SO + SEWI°,  (9)
where

3w kpTnac®/263 ¢°

B = 2 K3/2

(10)
Because B is always less than zero, we conclude that
the transition is first order. Because B is small, one can
foresee very weak first-order transitions.

The new cubic term in the free energy apparently vio-
lates the symmetry with respect to uniform translations
that was invoked when expanding the free energy in even
powers of |¢|. In fact, translation symmetry merely re-
quires that the free energy not involve explicitly the phase
of the complex order parameter ¥. We exclude terms
~ |¥|*, with a # {0,2,4, ...} on the grounds that we ex-
pect the free energy to be analytic near ¢ = 0. The |9|3
term is thus usually forbidden because it is not analytic.
We begin with a free energy that is a function of both v
and én and which meets the requirements of both symme-
try and analyticity. By integrating out the nematic fluc-
tuations, we are projecting the two-order-parameter free
energy F(1,én) onto the single-order-parameter, effec-
tive free energy F'(¢). Because this free energy is merely
an approximation to the full one, it need not be analytic
in .

Another important consequence of integrating out the
nematic fluctuations and taking them to be Gaussian is
that we have assumed that they are large compared to
smectic fluctuations. This is a good -approximation for
type-I smectics (the analog of type-I superconductors),
but it is questionable for type-II smectics. In the extreme
type-1I limit (K large), orientation fluctuations are sup-
pressed (dn — 0) and the free energy should revert back
to the form of Eq. (2). In this case, if C > 0, one would
have a second-order transition. As the smectic becomes
more strongly type II, one cannot decouple the dn field
from the 9 field. The resulting partition function has
been evaluated numerically via Monte Carlo simulations
by Dasgupta and Halperin and by Bartholomew, who
concluded that for strongly enough type-II smectics, the
transition should be second order. Little is known about
the type of tricritical point that would divide the regime
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of first-order transitions from the regime of second-order
transitions.

III. CAPILLARY-LENGTH MEASUREMENTS

The simple Landau theory for the N A transition (and
also the modification of it by de Gennes) predicts that
the surface tension vy goes very quickly to zero as one ap-
proaches the Landau tricritical point. Because the sur-
face tension goes to zero more quickly than the latent
heat, the capillary length do = 7 should also go to zero
at the tricritical point. If the HLM theory does hold,
then none of these quantities should actually vanish.

The problem becomes one of trying to measure either
the surface tension or the capillary length in one of these
mixtures. Traditional methods of measuring surface ten-
sion do not work very well here. They require a large
quantity of the materials and large surface tensions. The
surface tensions in this experiment are expected to be-
come very small near the Landau tricritical point. The
slow decrease of the capillary length makes it a better
candidate for measurement.

Fortunately, there is a technique from metallurgy, in-
troduced by Schaefer et al., that allows direct measure-
ment of the capillary length [19]. When a metal is solidi-
fying, domains of different crystal lattice orientation grow
together, meeting at grain boundaries. The surface ten-
sion of the solid-liquid interface is different from the sur-
face tension of the solid-solid surface at the grain bound-
ary. Since the forces must balance at the point where
liquid, solid, and grain boundary meet, the solid-liquid
interface will make contact with the grain boundary at
an angle. [See Fig. 2(a).] The effect is entirely analogous
to the creation of a meniscus of coffee in a cup, where
the flat interface imposed by the gravitational field bends
the fluid upward to make contact with the sidewalls. In
the present case, the flat interface away from the grain
boundaries is imposed by a thermal gradient.

Liquid
26

(a) Solid
// /0 l/ i
/Gram Boundary. :

Nematic

Smectic A

\Scratch ﬁ

FIG. 2. (a) A solid-liquid interface in a temperature gradi-
ent. The energy of the grain boundary in the solid phase pulls
on the interface, creating a cusp whose size £ ~ (doTo/G)/2.
(b) A smectic-A—-nematic interface in a temperature gradient.
The local melting of the smectic phase over the scratch pro-
duces a cusp in the interface that is identical in form to that
produced by the solid grain boundary in (a).
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At first thought, one would conclude that the method
of Schaefer et al. for measuring the capillary length
would not work for the NV A interface because there is no
analog of the notion of grain boundary in the laterally
isotropic Sm-A phase. But we found that a cusp could
nonetheless be created by a scratch on the substrate sur-
face. [See Fig. 2(b).]

One might justifiably wonder just how a scratch on one
of the glass plates produces a cusp. Our view of the situ-
ation was inspired by observations and discussion of the
effect of rough surfaces on nematic alignment. (See the
references cited in [23].) In that case, the nematic order
parameter decreases sharply in the vicinity of a rough
glass surface. Barbero and Durand [23] showed that for
small surface distortions, the sample remains nematic
throughout and has elastic distortion energy. For large
surface distortions, the nematic melts near the surface,
eliminating the elastic energy at the cost of the extra free
energy required to create the isotropic phase at tempera-
tures at which the nematic phase is stable. The crossover
occurs for distortions on the scale of the nematic correla-
tion length £ ~ 100 A. Moreover, the roughness-induced
melting penetrates into the nematic over this same length
scale &.

For a smectic, the tradeoffs are similar. At a given
temperature, the system can remain smectic at the cost
of smectic-elastic deformation energy. Alternatively, it
can revert to a nematic, paying the free-energy cost of
having a metastable phase. The result is that locally
the VA transition temperature is depressed. Because of
the horizontal temperature gradient used in our experi-
ments, the interface will sit at a different position over
the scratch, as compared to the interface away from the
scratch, leading to the cusps we see. One difference with
the nematic case is that the relevant length scale is much
larger (about 15 pm) than it is for nematics, reflecting
the well-known sensitivity of smectics to elastic distor-
tion [1]. In Appendix A, we estimate the magnitude of
this effect and find reasonable agreement with measured
cusp depths.

The experiment then consists of placing a liquid crys-
tal between two glass plates in a temperature gradient,
thereby creating the reference flat interface. Since one of
the plates is scratched, the interface will form a cusp cen-
tered on the scratch. From the shape of the cusp, which
we now derive, we can deduce the capillary length.

A. Measurement of the capillary length
from cusp images

The key point of physics lies in the Gibbs-Thomson
law, which states that the coexistence temperature of
a curved interface deviates slightly from its equilibrium
value [24,25]. In particular, T'(k) = Txa (1 — dok), where
& is the local mean curvature of the interface. The physi-
cal interpretation of this effect is that the surface tension
of the interface squeezes on the interior phase, raising
its pressure and (via the Clausius-Clapeyron law) shift-
ing its equilibrium coexistence temperature. If the local
interface position relative to that of a flat, undisturbed
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interface is given by y, then the drop in transition temper-
ature at each point on the interface is Gy. Since the cur-
vature is expressed in terms of y by x =y /(1 + y'?)3/2,
the assumption that each point of the interface is in local
thermodynamic equilibrium leads to the nonlinear differ-
ential equation

Tnadoy”
y= oA (11)

By scaling both  and y by £ = \/Z‘%Li", we can re-
move all material parameters from Eq. (11), leading to
the equation

yll
T o

where z and y are now understood to be scaled variables.
The length ¢ sets the basic scale of the cusp. In our
experiments, it was typically 5 — 50 um, depending on the
mixture concentration and on the temperature gradient.
Equation (12) may be integrated by multiplying both
sides by v’ to get

A 1 .
YTV ()

Since y' = 0 when y = 0 (far away from the scratch), we
must fix the integration constant to be f = 1. In order
that y’ be real, we choose f = —1. Integrating from the
bottom of the cusp yo to y and from 0 to =, we find

1+4+4/1— Q—_Zyﬁ\/l —sinf
22 (/14 sinf + v2)

L (\/1_ (y—4yo)2 _\/1 +2sin9) )

Using the other boundary condition y'(y = y0) = 73,

we find yo = 4/2(1 —sinf). This describes the inter-
face shape in terms of the contact angle 0. Fitting the
functional form of the cusp to the interface coordinates
for a number of different images resulted in about a 10%
spread in the parameter values for the capillary length.

T =29+ 1In

B. Calculation of the latent heat, surface tension,
and capillary length from the HLM theory

The measured values of dy were fit to a theoretical
function calculated according to the HLM theory. We
found it more convenient to calculate the surface tension
and the latent heat separately and then to take their
ratio. The latent heat is [18]

AS AS\7F 3/ a \ (Co \
(AS*) B (AS*) T8 (AS*) (f) (X=X,
, (15)
where X is the concentration of 10CB and C = —Cy(X —
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X*), an expression that is valid near the Landau tricrit-
ical point. The jump in entropy is AS = L/Tna =
(OF /8T) 1, , = ay?/2. Quantities denoted by an aster-
isk (AS*, X*) refer to values taken on at the Landau
tricritical point. We define AS/AS* = AS' = (y/¢*)2.
From Eq. (15), we extracted the reduced entropy jump
AS’' as a function of the concentration X by Newton’s
method [26].
The surface tension is given by

et [ (%)2@ (16)
= su/z_c/:’ VE@)di,

with F(9) = (4/2)|4]* + (B/3)[¥[> + (C/4)|¥]* +
(E/6)|¥|5. Using Eq. (15) and writing the coefficients
A, B, and F in terms of C and %*, we can rewrite the
surface tension as

_ cE\'? (AS*\?
() (57)

VAST
/ oy [(Nﬁ + AS’Z) ' — 4qp"?

X
0

1 1/2
-2 (AS’ _ m) ,¢I4 +¢16] i (17)

Equations (15) and (17) were then used to compute dyo.

IV. EXPERIMENTS
A. Sample preparation

Our candidate system was the mixture studied by
Marynissen et al., 8CB and 10CB. These molecules are
homologous liquid crystals, each made of a hydrocarbon
chain attached to two phenyl groups and a polar cyano
group. The phase diagram of the mixtures, Fig. 1, has
an apparent N A tricritical point. (Note that this is dis-
tinguished both from the N-A-I triple point, which is
present in the phase diagram and from the Landau tri-
critical point, which is the point along the N A transition
where the fourth-order Landau coefficient C' vanishes.)

Mixtures of 8CB and 10CB were “sandwiched” be-
tween 1-mm-thick glass plates separated by wire spacers
that were typically 12.5 ym in diameter. The bottom
plate measured 25 x 25 mm? and the top plate mea-
sured 20 x 20 mm?2. Because we prepared the mixtures
using small quantities of liquid crystal (0.1 g typically),
we determined the actual mixture concentrations by mea-
suring the nematic existence range and comparing it to
the phase diagram [27]. In the regime of interest, the ne-
matic existence range varied linearly with concentration.
By this method, our concentration values were accurate
to 2%.

To create the cusp, we lightly scratched the bot-
tom plate along the center using a straight edge and
a tungsten-carbide scribe. The plates were thoroughly

cleaned with soap in a heated, sonicated bath; rinsed
with tap water, distilled water, and distilled, deionized
water; and then dried in an oven at 120 °C for 1 h. In
order to enforce homeotropic boundary conditions (i.e.,
to make the liquid-crystal molecules perpendicular to the
glass plates, we coated the glass with a silane compound
(Merck ZLI 2510) by dipping the plates in <0.1% silane
in an equal mixture of toluene and dichloromethane. The
plates were separated by spacer wires and glued at the
edges. The completed cell was filled by heating it, plac-
ing a drop of 8CB-10CB mixture at the edge, and let-
ting capillary action draw the mixture between the glass
plates.

Treating the surfaces for the anchoring of the liquid-
crystal molecules turned out to be the most difficult part
of the sample preparation. Ideally, the surface of the
glass would be perfectly flat, with a uniform monolayer
of silane covalently bonded to it. Any dirt on the glass
not only prevented the silane from bonding properly, but
also contaminated the sample material. Heterogeneities
in the sample or on the surface would pin the interface
away from the proper shape. The quality of the sam-
ples also depended critically on the type of glass used to
make the sample cell. In general, green-tinted, or soda-
lime, glass gave the best results. Two kinds of “white” or
clear glass produced interfaces far removed from the ideal
perfectly straight line. A closer inspection of the glass us-
ing an atomic-force microscope (AFM) showed that the
soda-lime glass was flat to within 20 A with only long-
wavelength variations, while the white glass had abrupt
defects that were more pronounced. These small inhomo-
geneities of the surface pinned the interface in the small
temperature gradients required for the experiment.

The other sensitive aspect of these samples was the
scratch on the glass. Applying too much pressure on the
scribe produced an uneven scratch with large distortions
of the surrounding glass. Pressure that was too light did
not create the abrupt corner at the edge of the scratch
required to pin the interface. A closer look at a good
scratch with an AFM revealed that a scratch depth of
about 0.3 pm and a width of 10— 18 pm usually produced
the desired pinning. (See Fig. 3.)

0.5

ER \J/ J/
= 0.0
=
_0_5' I 1 1 1
0 5 10 15 20 25
X (Lm)
FIG. 3. Atomic-force microscope profile of a typical

scratch. The interface was clearly pinned at the right-hand
side. The left-hand side did not pin the N A interface cor-
rectly, because an abrupt drop is needed. The shallow descent
of the left-hand side of the scratch was also apparent in an
optical microscope, where the interface was seen to be weakly
pinned in two or three places. The vertical arrows point to
the “edges” of the scratch.
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B. Apparatus

The temperature gradient for the cusp measurements
was produced using two copper blocks separated by a 4-
mm gap. Each block had channels cut running through it
that carried water from a separate water bath [28]. One
water bath was set to a temperature above the phase-
transition temperature and the other to a temperature
below the transition. The temperature of each block was
stable to within 2 mK over 15 min and +7 mK over 2 h.
Holding the two copper blocks at different temperatures
created a linear temperature gradient across the gap, so
that that the VA transition would occur at a tempera-
ture reached somewhere in the middle of the gap. The
sample cell described above was placed on the copper
blocks, straddling the gap. It was important that the
base blocks be as level as possible and that they be at
the same height, so that the sample made good thermal
contact with both sides. In our case, the block heights
were adjusted to be within 25 um of each other. To
avoid vertical temperature gradients, we attached larger
copper blocks over the sample, surrounding it, but not
resting on it. This reduced the vertical gradient to less
than 10% of the horizontal gradient. The blocks were
cut so that there was about 50-um clearance above the
sample, to leave room for different sample thicknesses.
It was important that the upper blocks not touch the
sample because applying pressure on the smectic layers
would compress them and form unwanted defects. The
copper ovens were surrounded on the sides with a layer of
Teflon and a layer of aluminum and on the top and bot-
tom with fiberglass sheets with glass windows. The top
window was double glazed, but the bottom one was not,
because of the short working distance of the microscope
objective. The entire apparatus was attached to an XY
stage that was fixed to an inverted microscope [29]. (See
Fig. 4.)

The interfaces were observed by phase-contrast mi-
croscopy. A charge coupled device (CCD) camera [30]
was attached to the microscope and pictures of the in-

FIG. 4. Schematic top view of the temperature-gradient
stage. The sample is surrounded by a disk, so that it may be
rotated to align the scratch with the temperature gradient.
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Intensity

FIG. 5. Measured interface coordinates superimposed on
photograph of cusp. X = 0.585, h = 12.5 pm, phase-contrast
microscopy. The vertical graph shows the light-intensity pro-
file perpendicular to the interface.

terface were recorded by a frame-grabber card with real-
time background subtraction [31] controlled by “NIH Im-
age” [32].

The interface position was defined to be the intersec-
tion between the intensity fringes produced by the phase-
contrast optics with the average value of the background
intensity, interpolated through the interface region [36],
as shown in the inset to Fig. 5, which also shows a picture
of a cusp with the measured interface superimposed on
it.

C. Calibration of the temperature gradient

To measure the block temperatures, we placed temper-
ature probes (platinum resistance temperature devices,
or RTDs) in the lower section of each block. To calibrate
the temperature gradient in terms of these block tem-
peratures, we allowed the apparatus to come to thermal
steady state, with the interface located near the middle
of the gap. The temperature of each water bath was
raised by an amount roughly one-twentieth of the total
temperature difference between the baths. The tempera-
ture at each RTD was read before and after this change,
so that the temperature increase of the blocks could be
known. This temperature rise moved the interface a dis-
tance equal to the change in temperature in the sample
divided by the gradient. By knowing that the entire sys-
tem had had its temperature increased uniformly by a
certain amount, one could assume that the increase in
the sample was the same, thus avoiding introducing into
the calculation any heat losses between the RTDs and the
interior of the sample. Since the temperature increase
was small and the ovens well insulated, we could assume
that the losses to the environment were the same before
and after the temperature change. It was important that
the temperature increase be small enough to keep the
interface close to the center of the sample, because the
gradient varied near the edges of the gap. By comparing
the gradient calculated in this manner with the nominal
gradient G, om, Which could be inferred by dividing the
temperature difference between the RTDs by the width
of the gap, we arrived at a single factor (o = 0.70+0.03)
that accounted for the losses between the RTDs and the
sample interior. The gradient at the middle of the sample
was then G = aGLom-

To assess the linearity of the temperature gradient over
the gap between the ovens, we placed a thermocouple be-
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tween two glass plates to simulate a sample. The glass
plates were then slowly and smoothly pushed from one
side of the gap to the other by a stepper motor [33] con-
nected to a lead screw. The sample displacement relative
to the fixed gap was measured using a linear variable dif-
ferential transformer [34]. The temperature profile ob-
tained from this endeavor was linear to 4% over most (=
the center 3 mm) of the gap. The gradient decreased by
10% in the 0.5 mm nearest each edge. When measur-
ing dp, we adjusted our bath temperatures to center the
interface in the gap.

V. RESULTS

Pictures of the cusp for a given concentration of 10CB
in 8CB were taken at different temperature gradients.
The mixtures were of concentrations between 0.332 and
0.585 mole fraction 10CB. An attempt was made to in-
clude a mixture of concentration 0.20, but the faintness
of the interface and the interference of the phase-contrast
halo around the scratch prevented the cusp, which would
be small, from being clearly observed. Since our mea-
surement is made from CCD images of the sample, the
method breaks down when the interface cannot be clearly
viewed.

For those mixtures which could be observed, the size of
the cusp increased as the temperature gradient decreased
(see Fig. 6), as one would expect from the derivation
of the cusp shape, which gives ¢ ~ G s. (See Fig. 7.)
The contact angle varied between about 20° and 40° and
seemed to depend not on either temperature gradient or
mixture concentration, but more likely on the particular
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FIG. 6. Cusps in different temperature gradients. X =

0.503, h = 12.5 pm, phase-contrast microscopy.
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FIG. 7. Capillary lengths for three different concentrations
of 10CB determined for several temperature gradients.

point at which it made contact with the scratch on the
sample. (See Fig. 8.)

By fitting to a number of cusps at different gradients
for each concentration, we measured values of the cap-
illary length do for eight different mixtures. The fitting
was done using a commercial software package that uses
the Levenberg-Marquardt algorithm [35]. Each cusp was
fit to the function x(y) derived above [Eq. (14)]. The free
fit parameters were the capillary length dp, the contact
angle 6, the height of the cusp yo (actually the asymp-
totic y value of the interface far from the cusp), and the
z location zo of the point of contact to the scratch.) See
Fig. 9 for a sample fit and Fig. 10 for capillary values
obtained from the fit. The solid line in Fig. 10 is calcu-
lated using the parameters from this fit. These results
were compared with the same function calculated using
the parameters obtained by Anisimov et al. from the la-
tent heat data of Marynissen et al. (See Table I.) The
fit of the capillary-length data supports the HLM theory.
It does not go linearly to zero, as one would expect from
de Gennes’s version of the Landau theory, and the data
conform to the shape of the HLM theoretical curve.

Using the HLM expression for the latent heat
[Eq. (15)], we can extract the surface tension from our
capillary-length measurements. If, in this expression, we
use the parameters that we deduce from our dy measure-
ments, then the value that we obtain is a theoretical one,

" 405%
80 . 452%
o 503%
v 528%
— A 585%
é‘-}j 60|
S : .
= 40} = ° v .
< BN
o O o ‘. 2 v A ®
20 P v JN A
0 1 | 1 1
0 5 10 15 20 25

Temperature Gradient G (°C/em)

FIG. 8. Measurements of contact angle for several mixtures
over a range of temperature gradients.
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FIG. 9. Sample fit, using Eq. (17) to an interface profile. A
plot of the fit residuals is at bottom. The maximum deviation
is about 0.3 pm, which is to be compared to the total cusp size
of 25 pm. Here X = 0.585, h =12.5 pm, and G = 10.3 °C/cm.
From the fit, we deduced do = 11.8 A and 6 = 28.2°.

as it assumes the validity of the HLM theory for both sur-
face tension and latent heat for the particular material.
If, as was the case, we use the parameters that Anisimov
et al. deduced, then we do not make any such assump-
tion, as the HLM theory in that case was shown to fit
the measured latent heats well. In practice, both sets
of parameter values gave similar results for the surface
tension, but using the Anisimov parameters significantly
reduced the uncertainty in -« because the fit now takes
into account both the L and the dy data. The resulting
values of v span four orders of magnitude. See Fig. 11
and Table II, which summarizes our data.

Throughout our discussion so far, we have neglected
the vertical curvature of the meniscus found in the gap
between the two plates. Because only one plate is

12
10k - — — - Anisimov parameters
——— This work
S
< 6l
o
=
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2+
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0.3 0.4 0.5 0.6

Mole Fraction 10CB

FIG. 10. Capillary-length measurements for mixtures of
8CB and 10CB. The solid curve is a theoretical fit to the
measurements based on Eq. (17). The dashed curve uses in-
stead the parameters that Anisimov et al. deduced from the
latent-heat data collected by Marynissen et al. [12]
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TABLE I. Parameters from fits to the HLM model of the
N A transition. We have written the fit parameters in terms
of those used by Anisimov. Here AS™ is the entropy jump
per mole (in the text, it is per unit volume). R is the
ideal gas constant. « is defined as (3/8)(aCo/FE) and B as
4¢1 (cE/3)*/2/a®. In our work, all four parameters were de-
duced by fitting do(X). In the case of Anisimov et al. [18],
AS*/R, a, and X* were deduced from latent-heat measure-
ments L(X). The last parameter under the Anisimov column,
B, was deduced from our do data using Anisimov’s data for
the other parameters. Note the smaller error in 3 that comes
from using experimental data for the latent heat rather than
deriving all quantities from the do data alone.

Parameter This work Anisimov
As” 0.020+0.005 0.0261
@ 1.2440.20 0.993
X* 0.416+0.003 0.4243
8 1800+ 800 2180 + 50

scratched, the interface curvature might vary in the ver-
tical direction, biasing our measurement of dy. In Ap-
pendix B, we discuss this matter in detail. The upshot is
that the values of dy that we measure are unaffected by
the sample thickness h, for A < 15 um. Consequently, our
measurements were performed on samples with h = 12.5
pm.

Finally, we note that we have also assumed that our
sample is a pure, single-component system, both in the
discussion of the form of the free energy and of the shape
of the cusp. However, we in fact use a two-component
system that contains a small amount of impurities. In
Appendix C, we argue that we are nonetheless justified
in neglecting these and that our presentation given above
is valid.

VI. CONCLUSIONS

We have described the experimental setup and sam-
ple preparation for direct measurement of the capillary
length dy of a binary liquid-crystal mixture. For different

-
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FIG. 11. Surface tension obtained from capillary-length
data. The solid line is calculated using the parameters ob-
tained from the fit to the capillary-length measurements using
the HLM theory.
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TABLE II. Data collected from eight mixtures of 8CB-10CB. The latent heats used to extract «
from do are calculated using the Anisimov parameters (see Table I).

Concentration +0.007 do£10% (&) y (ergs/cm?) L (J/cm?)

0.332 0.35 2.2e-4 0.018
0.380 0.75 2.0e-3 0.061
0.405 1.0 8.8e-3 0.13
0.452 2.9 0.13 0.40
0.503 6.2 0.58 0.82
0.510 6.2 0.60 0.88
0.528 7.7 0.91 1.0
0.585 10.7 1.9 1.5

concentrations of the liquid-crystal mixture in a temper-
ature gradient, an N A interface was pinned to a surface
defect on the substrate. The resulting shape of the inter-
face was predicted using the Gibbs-Thomson effect and
a fit to this shape gave the capillary-length information.
The data, when interpreted using the free energy F'(v),
indicate clearly the presence of a negative cubic term
in 9. This term is forbidden by symmetry and analytic-
ity conditions in a single-order-parameter theory, but the
HLM calculation, which considers the coupling of two or-
der parameters ¥ and dn, implies an effective free-energy
term of just this form. Our results thus confirm the con-
clusion of Anisimov, Cladis, and collaborators that the
HLM theory is valid near a Landau tricritical point in
the VA phase diagram. In addition, we have deduced
values for the NI surface tension, which span four orders
of magnitude. Our method allows for measurements us-
ing very small quantities of material (< 1 mg) and gives
results for very small surface tensions (10~% dyn/cm). As
yet, neither we nor anyone else has seen any experimental
evidence for the tricritical point that Monte Carlo simu-
lations predict for more strongly type-II smectics (i.e., for
materials with smaller Ty 4/Tn1) or for any deviations
that call into question the assumptions of mean-field the-
ory used in writing out both the underlying Landau the-
ory and HLM’s modification of it. (Here we refer of
course to evidence gathered from measurement of jumps
in thermodynamic quantities. Much evidence for scaling
behavior beyond mean field has been observed on nomi-
nally second-order materials [1].) This points out a need
for systematic measurements of even weaker first-order
transitions. Our implementation of the “cusp method”
was limited by interfacial pinning to the sample’s glass
plates rather than by the optical resolution of our mi-
croscope. It would be interesting to see whether using
a different experimental geometry would allow measure-
ments of smaller cusps in smaller temperature gradients,
giving access to even smaller capillary lengths.
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APPENDIX A: WHY A SCRATCH
MAKES A CUSP

Here we consider the effects that a rough substrate
will have on a smectic liquid crystal. As discussed above
in Sec. III, for small roughnesses, we expect that the
smectic layers next to the surface will conform to the
substrate profile, at the cost of some elastic distortion
energy [1]. For large roughnesses, the smectic will melt to
a nematic phase, for which the elastic distortion energy is
much smaller (as we shall show below). The tradeoff that
we wish to calculate is then between the smectic elastic
distortion energy and the extra free energy required to
convert the smectic back to a nematic.

We model the rough surface by a sinusoidal profile of
wavenumber m and amplitude uo along the z direction.
The z direction is perpendicular to the substrate. The
elastic energy of a smectic-A phase is given by

1 ou\? 1 %u\’
= [ |5B|5; K23 1
Fy /I:ZB(Bz) —|—2K (6:1:2) dv, (A1)
where B is the compression modulus of the smectic layers
and K is the Frank splay constant, which determines the

energy cost of bending layers. Setting §F'/éu to zero, we
obtain the Euler equation

8%u 2 0%u
02 Mgt O (A2)
where A\ = % is a length that is roughly the smectic

layer spacing (=~ 30 A). In a semi-infinite geometry, the
solution to Eq. (A2) is

u = ug cos(mz)e” **, (A3)

where a = Am2. To estimate the free energy per unit
area of a finite-thickness sample, we substitute the elastic
distortion for the semi-infinite geometry [Eq. (A3)] into
Eq. (A2) and integrate over the finite vertical thickness of
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the sample. In our estimate, we choose the sample height
h. to be the decay length of the semi-infinite solution.
On the one hand, this allows us to extend the integral
to infinity without significant error. On the other hand,
it allows us to claim that the elastic distortion energy is
more or less uniformly distributed throughout the entire
sample. We also need to average over one wavelength of
the distortion in the z direction (27/m). Putting all of
this together, we have

m 27 /m oo 1
Fy dx / dz [iBugaz cos® mz e~2%*
0

=~ g A
1
+ §Ku(2)m4 cos®’mz e_z“z] (A4)
2.2 92
= “;7; VKB = 2VKB, (A5)

where 0y = uom is the maximum angle away from the
vertical that a director molecule is forced to adopt at the
surface.

One can do a similar calculation for the elastic energy
of a nematic liquid crystal anchored to a wavy substrate.
In this case, the free energy is (in the one-constant ap-
proximation)

1 80\?  (96\*
Fy ——/EK [(%) + (&) :|dV,
where 6 is the local molecular orientation (here confined

to the xz plane). The Euler equation is V26 = 0, whose
solution in a semi-infinite geometry is

(A6)

0 = g cos mxe™ ™*. (A7)
Following the smectic calculation, we find

_ Km#b}

Fy 1

(A8)
Next we note that the free-energy cost of remaining ne-
matic at a temperature AT below the transition tem-

perature is just AFya4 = Lya (TAN—"';) he. (Again, the
estimate is for the latent heat per unit area of a sample
of thickness h..)

To decide whether the sample is nematic or smectic
over the scratch at a given temperature, we balance these

free energies, leading to
AT Km0} 63

Lya—"h,
Nagp et — 4

KB. (A9)

Typical parameter values are h, =~ 1.5 x 1073 cm (above
this thickness, we observed variations in the capillary
length), Tna = 317 °C, K =~ 107% dyn, B ~ 10® ergs/cm
(1], 6o =~ 0.3 rad, and L ~ 10°—107 ergs/cm3. From AFM
r-ofiles of various scratches, we estimate that the rough-
ness wave number m is typically on the order of inverse
micrometers (m &~ 6 x 10* cm™!). We note that at the
relevant wave numbers m, we have vV KB > Km so that
the smectic distortion energy dominates over the nematic
distortion energy, as claimed above. We thus have

AT ~ Tna ( ) VKB. (A10)

0
4thNA

The transition temperature drop is then about 0.01 °C.
In a temperature gradient of about 10 °C/cm, this trans-
lates to 10 pm, which is of the order of the depth of the
cusps seen in this experiment.

For the nematic-isotropic (INI) interface, we have

AT _ Km@?
Lyy (T_m) he = 7, or

(A11)

2
AT:TNI( % )Km.

4h.Ln;

Using the NI latent heat of 3 x 107 ergs/cm?, we find
AT =~ 1075 °C, or a scale of about 0.01 pm. Since h >
0.01 pym, we see no cusp where the scratch crosses the
NI interface. Again, the essential point is the relative
fragility of the smectic layers to disruption by surface
roughness.

APPENDIX B: THICKNESS DEPENDENCE
OF THE CAPILLARY LENGTH

As mentioned at the end of Sec. V, one might worry
whether the thickness of the sample h affects the values
of dp deduced from the cusp image. Indeed, we observed
that upon increasing A from 12.5 ym to up to 50 pm,
the apparent capillary length would vary by a factor of
5. For the 50-um samples, the model gave a particularly
poor fit to the interface. Because the scratch was on

(a) (b)

FIG. 12. (a) For thin samples, the effect of a scratch on one
glass plate extends throughout the sample thickness. (b) For
thick samples (h > 15 pm), the scratch pins only the bottom
of the interface, leading to the vertical profile sketched here.
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FIG. 13. Effects of thickness on capillary length in samples
where the interface is pinned to one surface of the cell and
where the interface is pinned to both surfaces. X = 0.51.

only one of the glass plates, the interface was pinned
on only one side of the sample. In the extreme case,
this would mean that the shape of the interface was a
straight line on the top plate and a cusp shape on the
bottom plate, with the meniscus interpolating between
these extremes in between. This implies a curvature in
the vertical direction. (See Fig. 12.) Since the calculation
of the cusp shape assumes a constant vertical-curvature
profile, the derived functional form of the cusp would not
be valid here.

Although thick samples gave varied values for dg, one
can hope that for thin enough samples, the values de-
duced for dy would become independent of sample thick-
ness. We now show experimentally that this is indeed the
case. Two different methods were used to establish this.
First, the nominal thickness was varied from 7.5 pm to 50
pm to see whether there was a range of thickness in which
the capillary length was not affected. Second, both plates
of the sample were scratched and the scratches aligned
under a microscope to within a couple of microns. The
interface was then pinned to the top and bottom surfaces,
minimizing curvature variation in the vertical direction.

For samples with only one scratch, the capillary length
was more or less constant for thicknesses in the range 7.5
pm < h < 15 pm. It was larger for 25 um and thicker
samples. (See Fig. 13.) For fits to interfaces in the 50-
pm samples, the point of contact between the interface
and the scratch implied by the fit was far from the con-
tact point determined by eye. In other cases, the two
coincided.

Samples with two scratches were made for h = 15 pym
and 25 pm. The values of dy deduced for these sam-
ples agreed with those found using single-scratch samples
with h < 12.5 ym. (See Fig. 13.) This confirmed that
using thick samples with only one scratch did affect the
capillary-length measurements, but keeping h < 15 pm
avoided the problem.

APPENDIX C: EFFECTS DUE TO MIXTURES
AND IMPURITIES

The discussion in the body of the paper assumed im-
plicitly that the material being studied was pure. Ob-

viously, since we used a mixture of two different liquid
crystals, this is not true. Slightly less obviously, these
materials will themselves have small amounts of impuri-
ties. The presence of several components raises a number
of questions about our analysis. We shall argue below
that all of these concerns turn out to be unimportant for
us and that we are justified in treating the experimental
data as if it pertained to a pure material. We justify this
conclusion by considering the following questions.

(1) What are the actual levels of impurities and
what are their effects on the equilibrium phase diagram
(Fig. 1)?

(2) Does the shape of the cusp change?

(3) Is the form of the free energy changed by the im-
purities?

(1) Our mixtures of 8CB and 10CB used materials sup-
plied by BDH, Ltd. The manufacturer claims that the
primary impurity in the material as supplied is water,
whose saturation concentration at room temperature is
about 0.15 mol%. We assessed the purity of our ma-
terials directly by measuring the nematic-isotropic melt-
ing range of the base components 8CB and 10CB. (See
Fig. 14.) For 8CB, we found a melting range of not
more than 0.2 °C, which could be reduced to about 0.06
°C by heating and pumping on the liquid in a vacuum
dessicator. The logical assumption is that the difference
in melting ranges occurs as volatile impurities (partic-
ularly water) are pumped off, while the portion that
could not be pumped off corresponds to nonvolatile im-
purities. Using the van t’Hoff law for ideal solutions,
one has that the amount of impurities is approximately
[Ximp = ATNI/(dTNI/dXtmp)][k/(l — k)], where ATNI
is the NI coexistence range and dTn;/dX;mp is the NI
liquidus slope for the impurity. Using ATx; = 0.2 °C,
k = 0.8, and dTn;/dXimp = —1 °C/mol % [37], we
estimate X, =~ 0.8 mol %. Because the value of
ATy varies only slightly with the mixture concentration
X10cB, we conclude that it reflects the segregation of im-
purities rather than that of the liquid-crystal molecules
themselves. In particular, we conclude that any compo-
sitional effects are dominated by the impurities (water,
etc.) rather than by demixing of the 8CB and 10CB.

We also measured the NA coexistence range ATy 4
(cf. Fig. 14) and found that it varied between 0.03 and

0.2
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FIG. 14. Measured coexistence ranges for the NA and NT
transitions. Compare [27] for a discussion of the measurement
technique.
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0.08 °C, depending on the mixture concentration. From
the phase diagram (Fig. 1), we estimate the local slope
of the liquidus line to be dTv 4 /dX10cB =~ 0.2 °C/mol %.
In contrast to the NI case, ATn does depend on the
mixture concentration. This is to be expected near a crit-
ical point, since the free-energy difference of an impurity
molecule in one or the other phase goes to zero. If we
assume that AT 4 arises entirely because of the impuri-
ties, then we can deduce an VA impurity partition

X Xa—-X
A _ g, 24 N

k 1

imp = X——- = X
N N
AT,
M1+ A~ 1.002. (C1)
100 ZZxa Xy

(The factor of 100 converts the liquidus slope from mol %
to mol fraction.) The jump in impurity concentration
across the interface is thus very small.

(2) Having estimated the magnitude of the composi-
tion jumps and of the overall impurity concentrations,
we now ask whether these can affect the shape of the
cusp. If a steady state is maintained, the answer would
be no. Jumps in impurity and 10CB concentration across
the interface do lead to a shift in the melting tempera-
ture, as discussed in point (1) above. As long as this shift
is uniform, the only effect will be a uniform displacement
of the interface. However, if there is a gradient of con-
centration along the N A interface, the cusp shape will
change. Melo considered one cause of a concentration
gradient, that due to motion of the interface (caused by
fluctuations in the temperature regulation), and found
that the shape was changed significantly only when the
thermal length ATn4/G is much less than the diffusion
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length characterizing the concentration gradient (D /v,
where D is the diffusion coefficient and v is the typical
interface velocity) [38]. We can estimate this front veloc-
ity to be v & (dTeq/dt)/G, where dT,.q/dt is the rate
of change of temperature in the vicinity of the N A front
due to temperature-regulation fluctuations. We conclude
that the cusp shape will be largely unchanged then as
long as

1/2
ATy 4 PEres
NA ] (CZ)

G dt
L [omtie

Using ATnya = 0.08 °C, D = 107® cm?/s, and not-
ing that the temperature fluctuates 7 mK over 2 h, we
find that our temperature gradient G should be greater
than about 0.3 °C/cm, which is about ten times smaller
than our smallest gradients. Note that the presence of
dT,eq4/dt in Eq. (C2) suggests that it is important to min-
imize not just the temperature fluctuations, but also their
rate. For this reason, we chose to control the tempera-
ture of both blocks by water baths, which have long time
constants.

(3) The last question is how the impurities change the
form of the free energy used to calculate the capillary
length. Anisimov [39] considered this question and con-
cluded that impurities act as a scalar field in much the
same manner as the nematic order parameter considered
in Sec. II. Using a mixture and having impurities is thus
expected to change the A and C coefficients in Eq. (4),
but not to alter its form. Thus we conclude that we are
justified in treating our mixture, with its small amount
of impurities, as a single-component system.
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FIG. 4. Schematic top view of the temperature-gradient
stage. The sample is surrounded by a disk, so that it may be
rotated to align the scratch with the temperature gradient.



Intensity

FIG. 5. Measured interface coordinates superimposed on
photograph of cusp. X = 0.585, h = 12.5 um, phase-contrast
microscopy. The vertical graph shows the light-intensity pro-
file perpendicular to the interface.



G(°C/cm)

20.8

33

FIG. 6. Cusps in different temperature gradients. X =
0.503, h = 12.5 pm, phase-contrast microscopy.



